EU military decarbonisation: leader or laggard?

Kangaroo Group, Working Group on SPACE, SECURITY & DEFENCE 12 Feb 2024

Doug Weir

Director Conflict and Environment Observatory

CEOBS is a UK charity working to increase the protection of people and ecosystems from the impact of armed conflicts and military activities.

www.ceobs.org @ceobs_org www.militaryemissions.org @milemissionsgap

Direction of travel is clear: decarbonisation

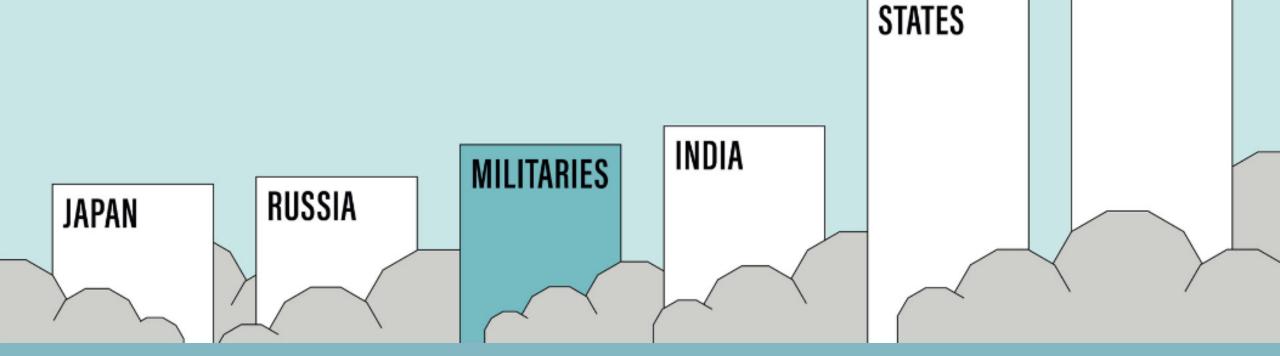
□ Net zero ambitions

"There is no way to reach net zero without also including emissions from the military," NATO Secretary General Jens Stoltenberg, COP26 in 2021

"...by 2050, we should be net zero in the armed forces." NATO Secretary General Jens Stoltenberg, COP28 in 2023

EU Green Deal – all sectors

Climate neutral by 2050: 90% emissions cut by 2040 versus 1990 levels.



If the world's militaries were a

country, it would have the fourth

highest carbon footprint.

UNITED

CHINA

Enabling conditions for military decarbonisation

□ Attitudes and policies

Overcoming "environmental exceptionalism".

Technology

Fossil fuel intensive militaries have high energy needs and long equipment lifespans – so start yesterday and send clear signals.

□ Transparency, trust and reporting

Key for any sector but not the military default.

Importance of transparency

UNFCCC: transparency improves the development of national climate policies, plans and strategies, and increases awareness, political will, support and capacity.

Transparency arrangements									
Preparing inventories of GHG emissions and removals	Tracking progress of implementing and achieving the NDC, formulating, implementing and reporting on mitigation policies and measures	Assessing the impacts of climate change, and formulating, implementing and reporting on adaptation actions	Identifying, tracking and reporting on support needed and received						
Benefits									
Informed development of national policies, plans and strategies	Increased awareness and political buy-in	Improved access to climate support	Enhanced capacity for low-emission and climate-resilient planning and implementation						

Member State	Reporting gap	Data accessibility	Milex US\$m (2022)	Member State	Reporting gap	Data accessibility	Milex US\$m (2022)
Austria	Very significant	Poor	3,626.00	Italy	Very significant	Poor	33,490.00
Belgium	Very significant	Poor	6,867.00	Latvia	Very significant	Poor	849
Bulgaria	Very significant	Poor	1,336.00	Lithuania	Very significant	Poor	1,732.00
Croatia	No comparison possible.	Very poor	1,309.00	Luxembourg	Very significant	Poor	565
Cyprus	Very significant	Fair	494	Malta	Very significant	Poor	87
Czechia	Significant	Poor	4,005.00	Netherlands	Very significant	Poor	15,607.00
Denmark	Gap in reporting.	Poor	5,468.00	Poland	No comparison possible.	Very poor	16,573.00
Estonia	No comparison possible.	Very poor	811	Portugal	Very significant	Poor	3,500.00
Finland	No comparison possible.	Poor	4,823.00	Romania	No comparison possible.	Poor	5,187.00
France	Significant	Poor	53,639.00	Slovakia	Very significant	Fair	1,994.00
Germany	Significant	Fair	55,760.00	Slovenia	Very significant	Poor	735
Greece	Very significant	Poor	8,105.00	Spain	Very significant	Poor	20,307.00
Hungary	Very significant	Fair	2,572.00	Sweden	No comparison possible.	Very poor	7,722.00
Ireland	No comparison possible.	Very poor	1,164.00				

2023 EU emissions reporting to the UNFCCC (2021 data) www.militaryemissions.org

National reporting

□ Progress?

More in-country reporting, but disparities with UNFCCC disclosures; inconsistent scopes and national security hesitancy.

Normative landscape

□ A level global playing field

As with all sectors, a global level playing field is important for emissions reporting.

EU military emissions reporting policies could help set global norms.

Making clear decarbonisation commitments has benefits for European defence and industry.

But decarbonisation requires transparency and reporting.

EU state of play: European Commission

Climate Change and Defence Roadmap

Implementing the Climate Change and Defence Roadmap, including *"helping Member States mitigate the carbon footprint of their military forces without compromising their combat capacities."*

ANNUAL PROGRESS REPORT

on the Implementation of the Strategic Compass for Security and Defence

MARCH 2023

EU state of play: European Parliament

P9_TA(2023)0407

"...calls on the High Representative of the Union for Foreign Affairs and Security Policy, the Commission and the Council to formulate a proposal for the transparent accounting of military emissions to the UNFCCC..."

P9_TA(2023)0407

UN Climate Change Conference 2023 in Dubai, United Arab Emirates (COP28)

European Parliament resolution of 21 November 2023 on the UN Climate Change Conference 2023 in Dubai, United Arab Emirates (COP28) (2023/2636(RSP))

EU state of play: The Council of the EU

General Secretariat, Jan 2024

"How might the EU further encourage and coordinate efforts to gain a clearer overview of the environmental impact of the military, including accurate information on their carbon footprint?"

RESEARCH PAPER

Greening the armies

Trends: Public attention on conflict emissions

Ukraine

The first ever effort to comprehensively assess any conflict's emissions.

🛛 Gaza

First emissions estimate published by the 9th January.

Future

Carbon cost of conflicts will be monitored with increasing precision.

NATO's Air Defender exercise, June 2023

□ 25 nations, two-weeks, 10,000 personnel and 250 aircraft.

- \Box Pre-exercise estimate (March 2023) 35,000 tonnes CO₂e.
- □ Annual emissions of 19,450 average EU cars.

LUFTWAFF

 \Box Gaps? Aircraft only, no data for other vehicles, no non-CO₂ effects.

*

Mainstreaming military emissions

UN @ environment programme

UNEP's Emissions Gap report, 2023

Emissions Gap Report 2023: Broken Record

Broken Record

Temperatures hit new highs, yet world fails to cut emissions (again)

2.2.2 Emissions rebounded across most global

The top seven global emitters remain the same as sectors following the COVID-19 pandemic in 2021: Brazil, China, India, Indonesia, the European Union, the Russian Federation and the United States of Emissions can be split into five major economic sectors: America (figure 2.2). Collectively, and with the addition of energy supply, industry, agriculture and LULUCF, transport international transport, these emitters accounted for a total and buildings. In 2022, energy supply was the largest of 33 GtCO2e in 2021, or 65 per cent of global emissions source of emissions at 20.9 GtCO2e (36 per cent of the on a territorial basis, including national inventory-based total), which is mainly due to combustion emissions in LULUCE CO., Combined, the G20 accounted for 76 per cent the power sector (14.8 GtCD₂e) and emissions from fossil of global emissions. By contrast, least developed countries fuel production including fugitive methane (6.1 GtCO-e), accounted for 3.8 per cent of global emissions, while small The energy supply sector is the largest contributor to the island developing States contributed less than 1 per cent. increase in emissions over the past decades, largely due Generally global emissions have shifted from high-income to to the worldwide expansion of coal- and gas-fired power low- and middle-income countries in the past two decades. generation (International Energy Agency 2023). However, it High-income countries, which include eight members of is also one of the only sectors where some countries have the G20 (Australia, Canada, the European Union, Japan made progress in reducing emissions by switching to lower Saudi Arabia, the Republic of Korea, the United Kingdom emission fuels and by scaling up renewable sources. of Great Britain and Northern Ireland and the United States of America) contributed 43 per cent of GHG emissions in Industry is the second largest sector when accounting by 2000, but 28 per cent in 2021.

direct emissions (14.4 GtCOve 25 per cent of the total) income countries w followed by agriculture and LULUCF CO₂ (global bookkeeping G20 (Argentina, Braz approach) (10.3 GtCO2e, 18 per cent), transport (8.1 GtCO2e, Russian Experation, South 53 per cent in 2000 and 6 14 per cent) and buildings (3.8 GtCO2e, 6.7 per cent). However, if power sector emissions are reallocated to fi There is some evidence t sectors based on their use of electricity and heat (i.e. indire emissions, which highlight a demand perspective), then the the international sanction contribution of the industry and buildings sectors incl have impacted regional (significantly (to 34 per cent and 16 per cent, respectiv with highly uncertain lor (Lamb et al. 2021b). Energy Agency 2022). operations, vehicles an

The latest data up to 2022 indicate that most global see trivial, but remain insuff have fully rebounded from the drop in 2020 emissions, wi reporting conventions, was induced by COVID-19, and now exceed 2019 levels w little change in the overall composition of sector emis-(Liu et al. 2023). An exception is aviation emissions, which was a set of the has driven efforts towa remain at 74 per cent of their 2019 peak of 1.0 GtCO2e, but reased investments are likely to continue to rebound in 2023 as air passenger lean energy policies and numbers start to reach pre-pandemic levels (International countries (Steffen and P Air Transport Association 2023). e time, some countr fuel extraction, citing e

2.3 Emissions trends of major emitters prices and a shift in regi in Europe.

total

6

G20 also increased (+1.2 per cent).

2.3.1 Emissions of the G20 members increased in imports from the Rus 2022 and accounted for three quarters of the 2022). Rising costs of on fossil fuels co poverty, in addition

Preliminary estimates for 2022 (which exclude LULUCF COunder hardship (G for which data is only available up to 2021) show an increase in GHG emissions compared with 2021 in Indonesia. Net LILLUCE CO. e (+10 per cent), India (+5.1 per cent), the United States of and land-use change, America (+1.6 per cent) and China (+0.3 per cent), and a tropical regions, with Braz decrease in the European Union (-0.8 per cent), the Russian Republic of the Congo contributing 58 per Federation (-1 per cent) and Brazil (-2.5 per cent). International total in 2021 - albeit with extremely high uncertainties transport emissions rapidly increased (+11.4 per cent), but (Friedlingstein et al. 2022). Countries such as these that

remain below pre-pandemic levels. Total emissions of the have a higher contribution from LULUCF CO2 also tend to experience larger annual fluctuations in GHG emissions due to policy-induced land-use changes, deforestation, wildfires on managed land or shifts towards forest protection (figure 2.2).

Iom 2022). There is

which took ac

There is some evidence that the global energy crisis and the international sanctions following the war in Ukraine have impacted regional economic activity and emissions, with highly uncertain long-term implications (International Energy Agency 2022). Direct emissions from military operations, vehicles and installations are likely nontrivial, but remain insufficiently accounted under UNFCCC reporting conventions, and there is limited evidence in the literature on the scope, scale, composition or trend of these emissions (Rajaeifar et al. 2022). The energy crisis

> Conflict and Environment Observatory

Conclusion

□ Leader or laggard?

Militaries have been slow to engage with emissions mitigation in spite of vocal concerns over climate security risks.

The EU has an opportunity to help define global reporting and transparency norms, and advance its military decarbonisation goals.

But decarbonisation and global norm setting are contingent on robust and transparent emissions reporting.

Failing to act on military emissions poses a far greater risk to our security than reporting them will ever do.

Thank you.

contact@ceobs.org www.ceobs.org @ceobs_org

